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Abstract-Ten years investigation of the super-deep penetration problem allows one to understand the 
main features of the effect and prepare the foundation for a model that can describe the process. The paper 
is devoted to the creation of such a model taking account of real conditions of super-deep penetration 
process, such as an intensive pressure field which is generated in the target by the flux of powder particles 
accelerated by a special explosive accelerator. Accurate investigation of the problem allowed one to obtain 
a precise solution of the problem, at least for the cases of constant and time-dependent pressures. 0 1997 

Elsevier Science Ltd. 

INTRODUCTION 

The super-deep penetration effect (SDP) has already 
been investigated for more than 10 years [IA], but 
the problem of constructing a correct model of the 
effect remains unsolved. The essence of the SDP effect 
is that on the interaction of a dense powder flux, 
generated by an explosive accelerator (Fig. 1) with a 
metallic target, the finite portion of these particles, 
about 0.1 %, can penetrate the target to a depth, x, 
that is equal to 1 03d or exceeds it, where d is the initial 
diameter of a particle. Such an effect can be observed 
for particles whose diameter is smaller than 10e4 m at 
the impacting velocity, U,, varying within l-3 km 
s -’ for various metallic targets, when the flux density 
pr is equal to lo3 kg me3, or exceeds it. This occurs 
despite the fact that the specific energy of such par- 
ticles (0.5 MJ kg-‘) is insufficient for penetration to a 
depth greater than 5Od. This fact attracted the atten- 
tion of researchers because it was impossible to 
explain by means of the existing models of penetration 
1% 61. 

Experimental investigation of SDP [l-4] allowed 
one to establish the most significant features of the 
effect : 

??the effect occurs only in the case of a dense flux of 
particles, when pr > 250 kg rnm3. The sizes of par- 
ticles in SDP are also limited. For the flux accel- 
erator used in [l-3] the ultimate diameter of particles 
should not exceed 1O-4 m ; 

??zones of intense plastic deformation, produced by 
the particles moving in the target, were observed 
close to the axis of their motion. That part of these 
zones, which is located closest to the path of pen- 
etration, is found to be amorphous, i.e. the metallic 
material loses its crystalline structure [4]. 

??the motion of particles in the target in SDP depends 
on the mechanical and thermal properties of the 
target material, but is independent of the con- 
figuration of their grain boundaries [l, 21. The chan- 
nels formed by passing particles in the target during 
penetration close again after the particles have 
passed and can only be observed later on sections by 
means of a special etching and polishing technique. 

The aim of the present paper is the creation of an exact 
hydrodynamic model of SDP which is an extension of 
the ideas stated in Refs [l-3]. 

CONDITIONS 

An impulse pressure (p z lC15 GPa) generated on 
the collision of a flux of particles with a target [l, 21 
makes it possible to consider the process occurring in 
that zone without allowance for the target strength 
[l-3]. As a rule, the velocity of particles does not 
exceed the speed of sound in a metal, U, < c, for the 
Reynolds number Re > 10’ [l, 21. This allows one to 
describe the target material, interacting with a 
particle, as inviscid and incompressible. 

The penetration of each separate particle under the 
SDP conditions can be divided into two stages : (1) an 
inertial period, when the particle velocity slows down 
under the action of hydrodynamic forces (the duration 
of this period is determined by both the time needed 
for the particle to penetrate the target to the depth 
x = L, where L is the particle length, and the time for 
the closing of the channel); (2) the motion of the 
particles after the closure of the channel which occurs 
as a result of the pressure generated by the flux of 
powder particles [ 1, 21. 
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NOMENCLATURE 

c speed of sound of a target [m SK’] At physically small time period [s] 
Cf drag coefficient of a particle u velocity of particles in a fixed 
d particle diameter [m] coordinate system or target material 
dm, total mass of the target material flow velocity in the coordinate 

upstream of the point 0 [kg] system connected with the particle 
dm, portion of the mass of the target [m s- ‘1 

material associated with jet ‘ 1’ [kg] ur particle flux velocity [m s-‘1 
dm, portion of the mass of the target u, particle velocity at the time t = t, 

material associated with jet ‘2’ [kg] [ms ‘I 
dm3 mass of the target material in front of K, stable particle velocity 

the particle [kg] [ms ‘I 
H ultimate depth of penetration [m] W velocity of the channel ‘walls’ directed 
1 distance between point 0 and rear to the path of particles [m ss’] 

surface of the particle [m] V absolute value of the sum of the vectors 
L particle length [m] of two velocities U and W 
M mass of a particle [kg] 6 velocity of jet ‘1’ originated from 0 
0 point of convergence of the channel and directed oppositely to direction 

formed by a penetrating particle in the of particle motion [m ss’] 
target V* velocity of jet ‘2’ originated from point 

p and p(t) pressure generated in the target 0 and directed along the direction of 
by the flux of particles [Pa] particle motion [m ss’] 

Re Reynolds number X current depth of penetration of a 
S cross-sectional area of a particle [m’] particle [m] 
t current time [s] % depth of penetration at the time t = t, 
tL. time of channel convergence [s] y, y,, yq and L(~ dimensionless parameters of 
r? time needed for a particle to penetrate calculations. 

the target to the depth x = L [s] 
T time period from the moment of 

channel convergence at the point 0 Greek symbols 
to the moment when jet ‘2’ touches the c( angle of the convergence of a channel 
rear side of the particle [s] [rad] 

4 sum of time periods t,, t, and T, that IJ kinetic target viscosity [m’ s-l] 
determines the total duration of the first p target density [kg mm’] 
stage of penetration [s] Pf flux density [kg mm3]. 

C 

RETARDATION STAGE 

In this stage the motion of a particle is determined 
by the hydraulic resistance of a target material and 
the inertia of the particle. When Re 2 100 and it is 
not necessary to take into account the viscous share 
of the resistance force, the equation of motion can be 
written as 

MdUldt = -CrpU=S/2 (1) 

where M, U and S are the mass, velocity and cross- 
sectional area of the particle, respectively. Cr is the 
particle drag coefficient that depends on the particle 
shape, p is the target density and t is the time. Equa- 
tion (1) holds only at large values of Re (Re >> I), 
otherwise it would be necessary to take account of the 
viscous component of the hydrodynamic resistance 
force. Under the initial condition U = U,, when t = 0 : 

Fig. 1. A scheme of an explosive accelerator [l] : (A) det- 
onator ; (B) explosive charge ; (C) powder container. 
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Fig. 2. Flow of target material near a particle in the coor- 
dinate system associated with the latter. 

,=$h(l+Cfg$t) (3) 

but as soon as x exceeds L the process changes sub- 
stantially (Fig. 2). 

SECOND STAGE OF PENETRATION UNDER A 

CONSTANT PRESSURE 

Under the pressurep, generated by a flux of particles 
in the target, the streamlines of the target material 
flowing about the particle (all the further calculations 
will be performed in the coordinate system connected 
with a particle-SCP) turn, after the passage of the 
particle, to the axis of the particle motion through the 
angle CI (Fig. 2). After the period of time 

t, = dl(2W (4) 

the channel, formed in the target by the particle, col- 
lapses entirely at the point 0 separated from the rear 
part of the particle by the length 1 = (d/2)/tan CI. Two 
jets originate from this point (Fig. 2). ‘1’ moving with 
the velocity V, and directed along the initial flow and 
‘2’ moving with the velocity V, in the opposite direc- 
tion. Since the velocity of the particle changes in the 
process of penetration, the coordinate system con- 
nected with the particle cannot be considered as iner- 
tial, but at any time one can point out such a physically 
small period of time At during which the change in 
the velocity is negligible and, consequently, both the 
particle and the point 0 in the SCP can be considered 
as fixed. The point 0 is the point at which streamlines 
turn, but the absolute value of the velocity at this 
point does not change [7,8] because the pressure drop 
on the cavity walls remains the same during the whole 
process, V, = - V, = V (Fig. 2). The mass of the 
liquid carried away by each of the two jets from the 
point 0 can be found from the laws of mass and 
momentum conservation : 

and 

dm, = dm, +dm, 

cosuVdm, = Vdm, - Vdmz (5) 

dm,ldm, =(l+cosc()/2, dm2/dm, =(l-cosu)/2. 

(6) 

The velocity V can be determined using Bernoulli’s 
law 

o.5pv2 = o.5pu2 fp. (7) 

For the time T, comparable with t,, jet ‘2’ overtakes 
the particle, retards on its rear surface and starts to 
push it. 

During a physically small period of time At, deter- 
mined earlier, the laws of mass and momentum con- 
servation for the particle in the fixed coordinate sys- 
tem can be written as : 

MdU = Vdm, - Udm, 

dmO = dm3 = pSUdt (8) 

where dm, and dmO are the masses of the liquid in the 
layer UAt in front and behind the particle, respec- 
tively. The use of eqns (6) and (7) yields 

MdU/dm,-O.S(l-coscc)V+U = 0. (9) 

Determining from Fig. 2 

cosu = u/v= 1 
‘J 

1+* 
PU2 

(10) 

and introducing the notation 

Y=Jm (11) 

the equation of particle motion can be obtained 

- (~JWPS)$%% dy 
457-3 

=dt (12) 

or, because dx = Udt, 

-@MIPS) dy 
Y(JW-3) 

= dx. (13) 

Calculation of eqns (12) and (13) is performed under 
the initial conditions y = y,, when t = tq = t,+ tc+ T. 
The time interval t, is known, t, is determined from 
eqn (3), when x = L. The unknown time interval T 
can be calculated from the equation : 

I= Vdt (14) 

where z = t,- T. Substituting I and V from eqn (7) 
into eqn (14) and performing its calculation, it is poss- 
ible to obtain a transcendental equation for deter- 
mining y and T 

&6-m = pSdyJ4M-lWyJ 

where 

Y0 = J&GE Y, = J%7z?, 

u= ,/(l+C/;;‘). 

(15) 

(16) 

The solution of eqn (15) y, is connected with T 
through 
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Y, = J&LZ and 

u, = u, i( l+Cr!$(r+Q) (17) 

and 

X, = (2M/pS9 In 
PSUO 1 + Cr zfs 

> 
. (18) 

Equations (12) and (13) can be calculated precisely : 

t =(2M/pS)Jp/2pln 

tan(x/4+0Sarcos l/m) 

. (JK$3)(3&?+&Y-l) 30 +t 

[ (Jl+;i-3)(3&zffiY,- 1) 1 I 4 
and 

(19) 

x = xq + (M/8pS) In 
y6(W- l)(m+ 1) 

I[ J@m- l)(W+ 1) I 

x (Jg$~)6~. (20) 

Together with eqns (2) and (3) when t < t,, eqn (19), 
which establishes connection between the time and 
velocity of the particle motion, and eqn (20), which 
in turn establishes connection between the depth of 
penetration and the particle velocity when t > t,, to 
give a full description of the process of solid particle 
penetration into the metallic target under the con- 
ditions of its loading by a dense high-speed flux of 
particles. 

SECOND STAGE OF PENETRATION UNDER THE 

PRESSURE WHICH DEPENDS ON TIME 

As can be easily seen from eqns (IO)-(13), the 
suggestion that the pressure p generated in the target 
by a flux of particles must be constant is not a pre- 
requisite one. If it is assumed thatp = p(t), the general 
form of eqns (12) and (13) will remain the same and 
these equations can also be calculated precisely. More- 
over, under the condition that, when t < t,, the change 
in pressure is rather small and can be considered con- 
stant (c is approximately equal to 10m7 s and the total 
time of the existence of pressure in a real experiment 
is usually equal to about 10m4 s, so that such an 
assumption is quite applicable for the case), the pro- 
cess will be totally described by eqns (15-20). Only 
the quantity p in eqns (10) and (20) will be replaced 
by p(t) and eqn (19) will have the form : 

s 
t J2pO)lpdt = (2M/pS) In tan n/4+0.5arcos 1 
% I i 

-)i l+ q tan(7r/4+ 0.5ar cos l/m) 

. (Jl+v,‘-3)(3W+fiY-l) 3/fi (21) 

[ (&+3)(3m+&Y, - 1) I I . 

If the precise dependence p = p(t) has been previously 
calculated or established experimentally, eqn (21) 
allows one to establish the dependence U = U(t), eqn 
(20) describes the dependence x = x(t) and together 
with eqns (2) and (3), when t < t,, will form a com- 
plete solution of the problem for the case. 

DISCUSSION 

Figures 3 and 4 graphically demonstrate the change 
in time of the particle velocity and depth of pen- 
etration changing for two possible cases : 

0.211 
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Fig. 3. The function U(t) for the case of the penetration of 
W particles (d = 10 pm) into an iron target for different 
values of the initial velocity U, under a constant pressure of 
about 10 GPa; (a) U, = 0.5 km s-‘, (b) U, = 0.7 km s-‘, 

(c) U, = 1.0 km SK’, (d) V, = 1.5 km s-‘. 
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Fig. 4. The function of x(t) for the case of the penetration of 
W particles (d = 10 pm) into an iron target for different 
values of the initial velocity under a constant pressure of 
about 10 GPa: (a) (I,, = 0.5 km SK’, (b) U, = 0.7 km SK’, 

(c) (I, = 1.0 km s-‘, (d) U, = 1.5 km s-‘. 
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1. &+3,<0 

2. m-3 > 0. (22) 

It can be easily seen that in both cases the particle 
velocity tends asymptotically to the value 

us, = O.SJPlP (23) 

and for t >> I, the depth of the particle penetration is 
increased almost in complete correspondence with the 
law x = U,,t. For example, whenp = 10 GPa for steel 
(p = 7830 kg m-i), U,, = 565.053 m s-‘. Practically, 
the loading time is tf = lo-“ s, therefore, the ultimate 
depth of penetration that can be achieved by a particle 
in this case for steel is H = 0.0561 m, or, when d = 10 
pm, H/d = 5610. Figures 5 and 6 show the results of 
calculations for the velocity of motion and depth of 
penetration of a tungsten particle in an iron target 
under SDP, when the pressure, generated in the target 
by a flux of particles, changes with time (the pressure 
curve is also depicted in both figures). 

The SDP model presented has some limitations 
imposed on the parameters of the flow and particles. 
It is obvious that the model can be valid only if t, c tf, 
that is 

(24) 

for a steel target this condition means that d << 0.1 m, 
which is quite satisfied when d < 10e4 m. There is also 
a restriction on the particle velocity, since the model 
uses the concept of an inviscid fluid in relation to the 
target material flowing around the particle. Otherwise, 
it would be necessary to take into account a viscous 
share of the hydrodynamic resistance force when 

Re= Ud/p< 10 (25) 

Fig. 5. The velocity-time curve for a varying pressure. p, the 
pressure time curve, 10 GPa; v, the current velocity [eqn 
(21)] vs time, km s-j ; s, the stable velocity [eqn (23)] vs time, 

km SC’. 

p = pressure curve [GPal; 
x = current relative depth; 

__ s = depth under steady velocity. 
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Fig. 6. The depth of penetration vs time curve for varying 
pressure. p, the pressure time curve, 1 GPa; x, the current 
depth of penetration [eqn (20)] vs time; s, the depth of 
penetration under a stable velocity, defined by eqn (23) vs 

time. 

which means that under SDP in accordance with the 
model presented 

Us < 10 p/d and Us, < 10 p/d (26) 

where p is the target viscosity and U, was defined by 
eqn (17). For steel this means that U, and Us, should 
exceed 25 m s-’ (d = 10 pm). For steel this is equi- 
valent to the requirement that the pressurep generated 
in the target by powder flux should exceed 0.07 GPa. 

CONCLUSION 

The hydrodynamic model of SDP presented allows 
one to obtain a precise solution of the problem of 
penetration of solid axisymmetric particles into a me- 
tallic target under the conditions corresponding to the 
requirements of SDP experiment. It was established 
that for the realisation of SDP the following special 
conditions are required : 

(1) The target material in the region of SDP must be 
unhardened by impulse treatment of the target by 
a dense high-speed flux of particles [l-3] ; 

(2) A flux of particles has to be dense enough and 
have a high speed in order to create in the target 
a pressure field substantially greater than 0.1 GPa. 
Via the mechanism of the formation of a high- 
velocity jet on closure of the channels formed in 
the target by penetrating particles, the potential 
energy of this pressure field is transmitted to the 
particles and compensates their energy losses in 
penetration. 
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